深度强化学习(DRL)使用多样化的非结构化数据,并使RL能够在高维环境中学习复杂的策略。基于自动驾驶汽车(AVS)的智能运输系统(ITS)为基于政策的DRL提供了绝佳的操场。深度学习体系结构解决了传统算法的计算挑战,同时帮助实现了AV的现实采用和部署。 AVS实施的主要挑战之一是,即使不是可靠和有效地管理的道路上的交通拥堵可能会加剧交通拥堵。考虑到每辆车的整体效果并使用高效和可靠的技术可以真正帮助优化交通流量管理和减少拥堵。为此,我们提出了一个智能的交通管制系统,该系统处理在交叉路口和交叉点后面的复杂交通拥堵场景。我们提出了一个基于DRL的信号控制系统,该系统根据当前交叉点的当前拥塞状况动态调整交通信号。为了应对交叉路口后面的道路上的拥堵,我们使用重新穿线技术来加载道路网络上的车辆。为了实现拟议方法的实际好处,我们分解了数据筒仓,并将所有来自传感器,探测器,车辆和道路结合使用的数据结合起来,以实现可持续的结果。我们使用Sumo微型模拟器进行模拟。我们提出的方法的重要性从结果中体现出来。
translated by 谷歌翻译
在与人共享环境中运行的自主系统需要能够遵循他们所占据的社会的规则。尽管法律对于一个社会是独一无二的,但不同的人和机构可能会使用不同的规则来指导其行为。我们研究了可能不一致的行为规则中达到共同基础的问题。我们正式定义了共同基础的概念,并讨论了该概念的主要特性。然后,我们确定了保证存在共同点的喇叭表达式的三个足够条件。我们提供了在这些条件下计算共同基础的多项式时间算法。我们还表明,如果删除了这三个条件中的任何一个,则可能不存在结果(较大)类的共同点。
translated by 谷歌翻译
基于5G的车辆互联网(IOV)网络中机器学习(ML)的集成使智能运输和智能流量管理。尽管如此,抵抗对抗中毒攻击的安全也越来越成为一项艰巨的任务。具体而言,深钢筋学习(DRL)是IOV应用中广泛使用的ML设计之一。标准的ML安全技术在DRL中无效,该算法学会通过与环境的持续互动来解决顺序决策,并且环境是随时间变化的,动态的和移动的。在本文中,我们提出了一个基于IOV中基于SYBIL的数据中毒攻击的封闭式复发单元(GRU)的联邦持续学习(GFCL)异常检测框架。目的是提出一个轻巧且可扩展的框架,该框架在不包含由攻击样本组成的A-Priori培训数据集的情况下学习和检测非法行为。我们使用GRU预测未来的数据顺序,以基于联合学习的分布方式分析和检测车辆的非法行为。我们使用现实世界的车辆移动轨迹研究了框架的性能。结果证明了我们提出的解决方案在不同的性能指标方面的有效性。
translated by 谷歌翻译
联合学习(FL)是一种有效的学习框架,可帮助由于隐私和监管限制无法与集中式服务器共享数据时,帮助分布式机器学习。 FL使用基于预定义体系结构的学习的最新进展。然而,考虑到客户端的数据对服务器和数据分布是不可相同的客户端,在集中设置中发现的预定义体系结构可能不是FL中所有客户端的最佳解决方案。在这项工作中受到这项挑战的动机,我们介绍了蜘蛛,这是一种旨在搜索用于联合学习的个性化神经结构的算法框架。蜘蛛是根据两个独特特征设计的:(1)交替地以通用的方式优化一个架构 - 均匀的全球模型(Supernet),一个架构 - 异构本地模型,由基于重量共享的正则化连接到全球模型(2通过新颖的神经结构搜索(NAS)方法实现架构异构本地模型,其可以使用对准确值的操作级别扰动来逐渐选择最佳子网。实验结果表明,蜘蛛优于其他最先进的个性化方法,搜索的个性化架构更加推理效率。
translated by 谷歌翻译